

Rapporto tecnico con la descrizione delle caratteristiche e delle prestazioni del sistema prototipale

0.0.4	Avvio del prototipo ed analisi di testing	Azione	4.2
Partner Responsabile	GEOSOLUTIONS S.A.S.		
Autori	Lorenzo Pini, Giovanni Allegri, Simone Giannecchini		
Nome del file	Deliverable_4.2.1.pdf	Stato	definitivo

Cronologia di approvazione del documento:

Cronologia di approvazione dei documento:						
Data	Stato (Bozza/Revisione/Finale)	Autore/Revisore				
18.12.2018	Bozza	Lorenzo Pini, Giovanni Allegri				
20.12.2018	Revisione/finale	Simone Giannecchini				
Scopo del documento Scopo di questo documento è fornire un breve report riguardante le caratteristiche e delle prestazioni del sistema prototipale.						

Destinatari del documento OP Leaders Partners Associates Stakeholders Decision Makers Altri Altri Private Non private Public

INDICE

Rapporto tecnico con la descrizione delle caratteristiche e delle prestazioni del sistema prototipale

1	INTRODUZIONE	4
2	REPORT	4

1 INTRODUZIONE

Scopo di questo documento è fornire un breve report riguardante le caratteristiche e delle prestazioni del sistema prototipale.

2 REPORT

La piattaforma è stata deployata fin da subito sul cloud pubblico di Amazon (AWS) usando un misto di tecniche innovative (*serverless*), come le *Lambda Functions* ed altre funzionalità avanzate, assieme a tecniche classiche basate sulla istanziazione di macchine virtuali (anche dette *elastic compute instances*).

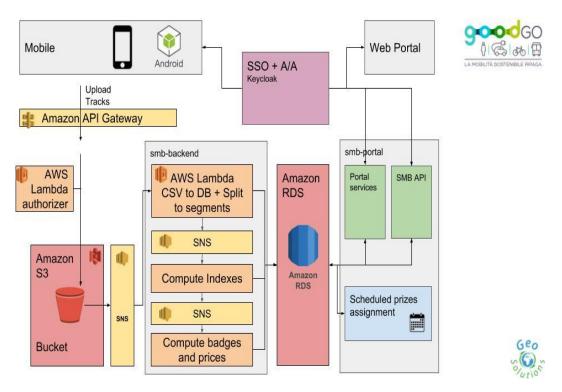


Figura 1. Diagramma di deployment della infrastruttura.

Come evidenziato in figura i componenti principali sono i seguenti:

- Le tracce vengono caricate direttamente dai cellulari sullo storage di Amazon denominato S3 (Simple Storage Service). Questo tipo di storage è stato pensato per lo storage di file di dimensioni medie e grandi e mette a disposizione accesso tramite API REST quindi non è adatto per applicazioni legacy che richiedono file system tradizionali ma visto il costo contenuto ed il fatto che sia completamente ridondato ci è sembrata la soluzione ideale per salvare le tracce grezze in modo durevole.
- L'endpoint usato per caricare le tracce è messo a disposizione e gestito direttamente dalla piattaforma di Amazon in mod
- Il back-end di GoodGo è sviluppato interamente con tecnologia *servless* tramite Lambda Functions scritte in Python che si attivano alla ricezione delle tracce in modo da processarle e caricarle nel DBMS spaziale di riferimento. Durante il processamento vengono fatti i calcoli necessari per aggiornare i badge ed i premi per i vari utenti. Il tutto gira in modo asincrono ed automatizzato.
- IL DBSM di riferimento è Postgresql, si è deciso di fare uso del servizio *Relational Database Service (RDS)* di Amazon in modo da usare un servizio completamente *managed* e non dover gestire noi il software stesso.
- Le funzioni di autenticazione e autorizzazione sono implementate usando il software Open Source Keycloack deployato su una istanza EC2 dedicata.
- Il portale GoodGo e le API dei servizi sono deployate su una istanza EC2 dedicata.

Il dimensionamento delle istanze EC2 di cui sopra è il seguente:

Macchina	Modello EC2	vCPU	Mem (GiB)	Storage
SSO - Keycloak	t2.xlarge	8	32	EBS
Portale e API	t2.xlarge	8	32	EBS

Il sistema è stato testato e dimensionato per riuscire a gestire il carico derivante da 500 utenti concorrenti per quanto riguarda la APP e 100 utenti concorrenti per quanto riguarda il portale. In fase di test iniziale è stato evidenziato come il portale stesso possa diventare il collo di bottiglia in caso di carico eccessivo per cui nuovi sviluppi potrebbero essere necessari per eliminare tali difetti e rendere anche il portale scalabile come il back-end.

